以前研究表明微生物群落中隐藏着基石物种,去除这些物种会导致微生物群结构和功能的巨大转变。然而,目前仍然缺乏一种有效的方法来系统地识别微生物群落中的基石物种。 近日,哈佛大学医学院刘洋彧及团队在Nature Ecology & Evolution发表最新研究,提出一个基于深度学习的数据驱动的基石物种识别框架,通过使用从该栖息地收集的微生物组样本训练一个深度学习模型,隐含地学习来自特定栖息地的微生物群落的组装规则。应用DKI来分析人类肠道、口腔微生物组、土壤和珊瑚微生物组数据分析结果说明,那些在不同群落中具有高中位关键性的分类群显示出很强的群落特异性,而且其中许多分类群在文献中被报道为关键分类群,值得关注。