复杂微生物群落的众多物种和未知的种群动力学一直是我们理解菌群结构变化(例如移除或添加物种)的根本障碍。推动这个领域向前发展可能需要失去一些解释机制的能力。从这个意义上说,深度学习方法可以使我们合理操控和预测复杂微生物群落的动态变化。哈佛医学院刘洋彧团队与合作者近期在iMeta发表研究Predicting microbiome compositions from species assemblages through deep learningt,开发了一个深度学习框架来预测物种组合的群落组成,该框架不需要了解任何微生物动力学,并且各种数据的验证显示了其准确的预测能力。