Nanopore sequencing enables high-resolution analysis of resistance determinants and mobile elements in the human gut microbiome
Niranjan Nagarajan
时长:18:51 分会场:2019中国肠道大会 - 新技术大会
The analysis of information rich whole-metagenome datasets acquired from complex microbial communities is often restricted by the fragmented nature of assembly from short-read sequencing. The availability of long-reads from third-generation sequencing technologies (e.g. PacBio or Oxford Nanopore) can help improve assembly quality in principle, but high error rates and low throughput have limited their application in metagenomics. In this work, we describe the first hybrid metagenomic assembler which combines the advantages of short and long-read technologies, providing an order of magnitude improvement in contiguity compared to short read assemblies, and high base-pair level accuracy. The proposed approach (OPERA-MS) integrates a novel assembly-based metagenome clustering technique with an exact scaffolding algorithm that can efficiently assemble repeat rich sequences. Based on evaluations with defined in vitro communities and virtual gut microbiomes, we show that it is possible to assemble near complete genomes from metagenomes with as little as 9× long read coverage, thus enabling high quality assembly of lowly abundant species (80 putative plasmid/phage sequences and a 263kbp jumbo phage. Our results highlight that high-quality hybrid assemblies provide an unprecedented view of the gut resistome in these patients, including strain dynamics and identification of novel plasmid sequences.
Niranjan Nagarajan
新加坡基因组研究院计算与系统生物学中心
"Senior Group Leader  Associate Director, Computational and Systems Biology Professor Nagarajan and his team's research primarily focuses on developing novel statistical and combinatorial algorithms to analyse massive genomic datasets and provide biological insights. A defining aspect of their computational genomics work is the use of parametric complexity analysis and exact algorithms to design bioinformatics tools with provable performance guarantees. They primarily focus on addressing questions in three areas a) Sequence Analysis & Assembly b) Metagenomic Analysis and c) Integrative Genomics. "
更多视频
肠道菌群成像新工具的开发与应用
化学工具的发展可以为肠道菌群研究提供新的研究角度和工具,报告中将介 绍我们近期利用基于 D-型氨基酸的代谢探针,采用序贯标记的方式(sequential tagging with D-amino acid-based metabolic probes, STAMP)实现了粪菌移植过程中植入菌的成像追踪与在受体小鼠体内存活情况的评估,解决了粪菌移植中潜在的发挥治疗效用的细菌种类鉴别这一难题,为深入理解这一极为复杂但又潜力巨大的微生物疗法提供了研究工具, 也为这一疗法的步骤优化与标准化提供了研究方法。此外,还将介绍我们最近在体内菌群实时观察成像方面的工作进展。通过使用带有炔基的 D-型氨基酸探针,在体内代谢标记供体肠道菌群之后,再配合使用带有叠氮基团的红外 II 区荧光染料在体外进行点击化学反应,将荧光基团偶联到菌群表面。将这一菌群植入受体小鼠之后,目前已可以实现小鼠体内菌群的活体实时成像观察,并将成像方法拓展到了各类常见的致病菌与共生菌菌株的在体成像观察中。
王炜 时长:21:15
Nanopore Long Reads: Farewell to Blind Spots in Microbiome Research
吴昕 时长:27:57
USING PROXIMITY TO FIX ASSEMBLY
Background and Aims: The loss of long-range sequence contiguity in the process of NGS sequencing is an obstacle to understanding the structure and function of genomes and metagenomes. This obstacle negatively affects both clinical research efforts and virtually all microbiome-centric projects as much genetic information cannot be reconstructed from complex mixed microbial communities without culturing the constituent microbes. Methods and Results: The chromosome conformation capture method, Hi-C, restores chromosome-scale contiguity to large genome assemblies and enables the deconvolution of numerous genomes from mixed samples such as complex microbial communities. Hi-C captures genomic proximity interactions through in vivo crosslinking, followed by proximity-ligation and sequencing. Since the crosslinks occur inside intact cells, any two loci that interact by Hi-C must have originated in the same cell, and this data can be used to deconvolute high quality genomes directly from mixed populations. We have developed a metagenomic discovery platform that exploits Hi-C proximity-ligation data and have applied it to a number of diverse sample types. Our ProxiMeta Hi-C extracts large numbers of genomes directly from microbiome samples without culturing, which can also associate plasmids and phage with hosts and separate strains without culturing. Conclusions: We will discuss the application of Hi-C data to a number of diverse microbiome samples. For example, we have been able to discover hundreds of novel strains and species from fecal and infected samples, as well as identify novel plasmid/phage host interactions.We have been able to identify the host for a number of AMR genes within novel species, underscoring the value of proximity-ligation data to microbiome research.
Ivan Liachko 时长:20:08
评论