基于微生物组搜索的疾病检测方法学研究
苏晓泉
时长:15:21 分会场:2019中国肠道大会 - 新技术大会
目前,微生物组研究在临床应用的重要性迅速提高。然而,不同临床研究结果的整合利用是一项极具挑战性的工作,特别是当研究方法不一致时,健康程度的定义和衡量难地单纯地利用单一的微生物组成分来实现。为了解决这项挑战,本研究基于微生物组搜索引擎( Microbiome Search Engine;MSE),提出一种不依赖于预先模型训练和生物标记的多疾病诊断方法。该方法首先利用健康的微生物组样本建立参考数据库,通过特异的微生物组新奇指数(Microbiome Novelty Score; MNS)来迅速检测出具有高患病风险的样本,之后采用疾病数据库的搜索匹配来确定疾病的种类。这种检测方法对数据的测序平台差异、环境污染也有较强的的鲁棒性。因此,本项工作在微生物组疾病诊断的准确性和交叉适用性方面提供了相当大的改进,相关结果也将会引起科研界和医学界的极大兴趣。
苏晓泉
中科院青岛生物能源与过程所
博士,副研究员,硕士生导师,生物信息研究组负责人。主持国家自然科学基金青年、面上项目,中科院重点部署项目、山东省自然科学基金重大基础研究项目、中科院重点实验室开放课题等,论文发表于mBio, Bioinformatics, BMC Systems Biology, BMC Genomics等期刊。
了解更多
更多视频
肠道菌群成像新工具的开发与应用
化学工具的发展可以为肠道菌群研究提供新的研究角度和工具,报告中将介 绍我们近期利用基于 D-型氨基酸的代谢探针,采用序贯标记的方式(sequential tagging with D-amino acid-based metabolic probes, STAMP)实现了粪菌移植过程中植入菌的成像追踪与在受体小鼠体内存活情况的评估,解决了粪菌移植中潜在的发挥治疗效用的细菌种类鉴别这一难题,为深入理解这一极为复杂但又潜力巨大的微生物疗法提供了研究工具, 也为这一疗法的步骤优化与标准化提供了研究方法。此外,还将介绍我们最近在体内菌群实时观察成像方面的工作进展。通过使用带有炔基的 D-型氨基酸探针,在体内代谢标记供体肠道菌群之后,再配合使用带有叠氮基团的红外 II 区荧光染料在体外进行点击化学反应,将荧光基团偶联到菌群表面。将这一菌群植入受体小鼠之后,目前已可以实现小鼠体内菌群的活体实时成像观察,并将成像方法拓展到了各类常见的致病菌与共生菌菌株的在体成像观察中。
王炜 时长:21:15
Nanopore Long Reads: Farewell to Blind Spots in Microbiome Research
吴昕 时长:27:57
USING PROXIMITY TO FIX ASSEMBLY
Background and Aims: The loss of long-range sequence contiguity in the process of NGS sequencing is an obstacle to understanding the structure and function of genomes and metagenomes. This obstacle negatively affects both clinical research efforts and virtually all microbiome-centric projects as much genetic information cannot be reconstructed from complex mixed microbial communities without culturing the constituent microbes. Methods and Results: The chromosome conformation capture method, Hi-C, restores chromosome-scale contiguity to large genome assemblies and enables the deconvolution of numerous genomes from mixed samples such as complex microbial communities. Hi-C captures genomic proximity interactions through in vivo crosslinking, followed by proximity-ligation and sequencing. Since the crosslinks occur inside intact cells, any two loci that interact by Hi-C must have originated in the same cell, and this data can be used to deconvolute high quality genomes directly from mixed populations. We have developed a metagenomic discovery platform that exploits Hi-C proximity-ligation data and have applied it to a number of diverse sample types. Our ProxiMeta Hi-C extracts large numbers of genomes directly from microbiome samples without culturing, which can also associate plasmids and phage with hosts and separate strains without culturing. Conclusions: We will discuss the application of Hi-C data to a number of diverse microbiome samples. For example, we have been able to discover hundreds of novel strains and species from fecal and infected samples, as well as identify novel plasmid/phage host interactions.We have been able to identify the host for a number of AMR genes within novel species, underscoring the value of proximity-ligation data to microbiome research.
Ivan Liachko 时长:20:08
评论