首页
热心肠日报
文献库
产业库
榜单
关于日报
《肠·道》演讲
往期精彩
《肠·道》2024
《肠·道》2023
《肠·道》2022
《肠·道》2021
《肠·道》2020
《肠·道》2019
《肠·道》2018
《肠·道》2017
关于《肠·道》
肠道大会
热心肠大会
热心肠智库
智库专家
专家动态
智库新闻
关于智库
奖学金
年度人物奖
更多
HOPE
会议信息
科学与艺术
学术专刊
R·AI
周刊
热心肠先生
研究院动态
关于我们
搜索
登录
关闭
手机邮箱登录
扫码登录
微信扫描二维码快捷登录
验证成功,将在
3
秒钟后跳转
已超时,请
重试
关闭
二维码登录
手机登录
邮箱登录
+86
+1
+852
+886
+81
+65
+61
+44
获取验证码
登录 / 注册
关闭
二维码登录
手机登录
邮箱登录
获取验证码
登录 / 注册
迁移学习
文章数:2篇
疾病诊断
宁康团队:迁移学习模型或可促进基于微生物的跨区域疾病诊断
炎症性肠病人群肠道菌群的异质性具有显著的区域效应,这在很大程度上限制了基于微生物的疾病诊断的跨区域应用。目前,基于微生物的机器学习方法已用于炎症性肠病和2型糖尿病的诊断,但尚无法减轻跨区域效应。近日,华中科技大学宁康及其团队在Gut发表最新研究,将迁移学习引入疾病神经诊断模型,“借用”源城市有关疾病的成熟知识,辅助目标城市进行疾病诊断,提高了人工智能在缺乏目标城市微生物群模式信息时的诊断准确性和稳健性。
疾病诊断
人工智能
机器学习
迁移学习
研究论文
菌群分类
宁康团队:利用迁移学习解决多情景下菌群分类问题
菌群分类能够确定菌群的潜在类型和来源,从而有助于更好地理解群落的分类和功能结构是如何发展和维持的。华中科技大学宁康团队近期在Briefings in Bioinformatics发表文章,引入了基于迁移学习的EXPERT,使分类模型能够适应多种环境,具有较高的效率和准确性。作者在文中证明了迁移学习可以促进在不同背景下的菌群分类,例如在有限样本数量的多种疾病的菌群分类,以及预测结肠直肠癌连续分期的肠道菌群的变化。从广义上说,EXPERT实现了精确的、情景感知的菌群定制分类,并增强了新的微生物知识发现能力。
菌群分类
迁移学习
情景感知
疾病分类
只是发现